Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors
نویسندگان
چکیده
Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3-5.4 mmol m⁻³ enabling a calculated limit of detection (LOD) at 0.14 mmol m⁻³ (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated.
منابع مشابه
Advanced gas sensors based on substrate-integrated hollow waveguides and dual-color ring quantum cascade lasers.
This study shows the first combination of a ring-shaped vertically emitting quantum cascade laser (riQCL) providing two distinct emission wavelengths combined with a substrate-integrated hollow waveguide (iHWG). This ultra-compact riQCL-iHWG gas sensing device enables the simultaneous detection of two vapor phase species - here, furan and 2-methoxyethanol - providing distinctive absorption feat...
متن کاملDevelopment of an Enhanced Gain Substrate Integrated Waveguide H-plane Horn Antenna Using Thin Substarte
In this paper a dual band and high gain H-plane horn antenna implemented by substrate integrated waveguide (SIW) using a single layer thin substrate is introduced. The proposed antenna consists of five parts of rectangular waveguide with different width arranged in a staircase manner to allow mode combination of fundamental and higher propagating modes of the structure. By adjusting the length ...
متن کاملDevelopment of Low Profile Substrate Integrated Waveguide Horn Antenna with Improved Gain
In this paper a new low profile Substrate Integrated Waveguide (SIW) probe-fed H-plane horn antenna structure with improved gain is proposed. The proposed antenna consists of two waveguides including a rectangular and a taper one, in which both, first and third modes of the structure are simultaneously excited leading to a uniform field distribution along the radiating aperture of the antenna a...
متن کاملDesign Investigation of Microstrip Patch and Half-Mode Substrate Integrated Waveguide Cavity Hybrid Antenna Arrays
In this paper two linear arrays including a linear 1×4 and a planar 2×2 of microstrip patch and half-mode substrate integrated waveguide (SIW) cavity hybrid antenna are introduced and investigated. These are simply implemented using low cost single layer printed circuit board (PCB) process. The array element consists of a rectangular microstrip patch with appropriate dimensions in the vicinity ...
متن کاملHigh Q Power Divider/Combiner with High Output Isolation using Substrate Integrated Waveguide Technology
A power divider (PD)/ power combiner (PC) with high quality factor and enhanced output ports isolation using substrate integrated waveguide (SIW) technology is proposed. An SIW cavity is designed to provide a high quality factor filtering response and an SMD resistor is attached between two output ports to realize the high isolation. The value of the applied resistor is calculated by using the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013